Problem 5097. Let $p \geq 2$ be a natural number. Find the sum

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\lfloor\sqrt[p]{n}\rfloor}
$$

where $\lfloor a\rfloor$ denotes the floor of a. (Example $\lfloor 2.4\rfloor=2$).

Proposed by Ovidiu Furdui, Cluj, Romania

Solution by Ercole Suppa, Teramo, Italy
Let us denote by $f(n)$ and $S(n)$ the terms and the partial sums of the given series respectively, i.e.

$$
f(n)=\frac{(-1)^{n}}{\lfloor\sqrt[p]{n}\rfloor} \quad, \quad S(n)=\sum_{k=1}^{n} \frac{(-1)^{k}}{\lfloor\sqrt[p]{k}\rfloor}
$$

Note that $f(n)$ is a decreasing sequence and $f(n) \rightarrow 0$ as $n \rightarrow+\infty$, hence, our series is convergent by virtue of Leibnitz's criterion. Thus, in order to determine the requested sum, we can consider the subsequence $T(n)=S\left((2 n)^{p}\right)$.

Clearly we have:

$$
\begin{aligned}
T(n) & =f\left(2^{p}-1\right)+f\left(2^{p}\right)+f\left(4^{p}-1\right)+f\left(4^{p}\right)+\cdots+f\left((2 n)^{p}-1\right)+f\left((2 n)^{p}\right)= \\
& =-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\cdots-\frac{1}{2 n-1}+\frac{1}{2 n}
\end{aligned}
$$

since for all $n \in \mathbb{N}$ and $i \in 1,3,5, \ldots,(2 n)^{p}-3$ we have

$$
f\left((n-1)^{p}+i\right)+f\left((n-1)^{p}+i+1\right)=0
$$

Thus $T(n)$ is exactly the partial sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

Therefore, thanks to a well known result, we obtain

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\lfloor\sqrt[p]{n}\rfloor}=-\log 2
$$

and the proof is finished.

