
Problem 5097. Let p ≥ 2 be a natural number. Find the sum
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where bac denotes the floor of a. (Example b2.4c = 2).
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Solution by Ercole Suppa, Teramo, Italy

Let us denote by f(n) and S(n) the terms and the partial sums of the given
series respectively, i.e.
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Note that f(n) is a decreasing sequence and f(n) → 0 as n → +∞, hence,
our series is convergent by virtue of Leibnitz’s criterion. Thus, in order to de-
termine the requested sum, we can consider the subsequence T (n) = S((2n)p).

Clearly we have:

T (n) = f (2p − 1) + f (2p) + f (4p − 1) + f (4p) + · · ·+ f ((2n)p − 1) + f ((2n)p) =
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since for all n ∈ N and i ∈ 1, 3, 5, . . . , (2n)p − 3 we have

f ((n− 1)p + i) + f ((n− 1)p + i + 1) = 0

Thus T (n) is exactly the partial sum of the series
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Therefore, thanks to a well known result, we obtain
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= − log 2

and the proof is finished. �
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